5.8 (3 points; one for each)

- **5.8.** (a) The distribution of \bar{x} is approximately Normal. (The distribution of observed values—that is, the population distribution—is unaffected by the sample size.) (b) \bar{x} is within $\mu \pm 2\sigma/\sqrt{n}$ about 95% of the time. (c) The (distribution of the) sample mean \bar{x} is approximately Normal. (μ is not random; it is just a number, albeit typically an unknown one.)
- 5.10 (3 points; one for each)
- **5.10.** (a) $\sigma_{\bar{x}} = \sigma/\sqrt{200} \doteq 0.08132$. (b) With n = 200, \bar{x} will be within ± 0.16 (about 10 minutes) of $\mu = 7.02$ hours. (c) $P(\bar{x} \le 6.9) = P\left(Z \le \frac{6.9 7.02}{0.08132}\right) \doteq P(Z \le -1.48) \doteq 0.0694$.
- 5.11 (3 points; one for each)
- **5.11.** (a) With n = 200, the 95% probability range was about ± 10 minutes, so need a larger sample size. (Specifically, to halve the range, we need to roughly quadruple the sample size.) (b) We need $2\sigma_{\bar{x}} = \frac{5}{60}$, so $\sigma_{\bar{x}} \doteq 0.04167$. (c) With $\sigma = 1.15$, we have $\sqrt{n} = \frac{1.15}{0.04167} = 27.6$, so n = 761.76—use 762 students.
- 5.12 (2 points; one for each)
- **5.12.** (a) The standard deviation is $\sigma/\sqrt{10} = 280/\sqrt{10} \doteq 88.5438$ seconds. (b) In order to have $\sigma/\sqrt{n} = 15$ seconds, we need $\sqrt{n} = \frac{280}{15}$, so $n \doteq 348.4$ —use n = 349.
- 5.14 (2 points; one for each)
- **5.14.** (a) For this exercise, bear in mind that the actual distribution for a single song length is definitely *not* Normal; in particular, a Normal distribution with mean 350 seconds and standard deviation 280 seconds extends well below 0 seconds. The Normal curve for \bar{x} should be taller by a factor of $\sqrt{10}$ and skinnier by a factor of $1/\sqrt{10}$ (although that tech-

nical detail will likely be lost on most students). (b) Using a N(350, 280) distribution, $1 - P(331 < X < 369) \doteq 1 - P(-0.07 < Z < 0.07) \doteq 0.9442$. (c) Using a N(350, 88.5438)distribution, $1 - P(331 < X < 369) \doteq 1 - P(-0.21 < Z < 0.21) \doteq 0.8336$.

- 5.19 (2 points; one for each)
- **5.19.** (a) $\mu_{\bar{x}} = 0.5$ and $\sigma_{\bar{x}} = \sigma/\sqrt{50} = 0.7/\sqrt{50} \doteq 0.09899$. (b) Because this distribution is only approximately Normal, it would be quite reasonable to use the 68–95–99.7 rule to give a rough estimate: 0.6 is about one standard deviation above the mean, so the probability should be about 0.16 (half of the 32% that falls outside ±1 standard deviation). Alternatively, $P(\bar{x} > 0.6) \doteq P(Z > \frac{0.6 0.5}{0.09899}) = P(Z > 1.01) = 0.1562$.

5.21(2 points; one for each)

5.21. Let X be Sheila's measured glucose level. (a) P(X > 140) = P(Z > 1.5) = 0.0668. (b) If \bar{x} is the mean of three measurements (assumed to be independent), then \bar{x} has a $N(125, 10/\sqrt{3})$ or N(125 mg/dl, 5.7735 mg/dl) distribution, and $P(\bar{x} > 140) = P(Z > 2.60) = 0.0047$.

5.22 (4 points; one for each)

5.22. (a) $\mu_X = (\$500)(0.001) = \0.50 and $\sigma_X = \sqrt{249.75} \doteq \15.8035 . (b) In the long run, Joe makes about 50 cents for each \$1 ticket. (c) If \bar{x} is Joe's average payoff over a year, then $\mu_{\bar{x}} = \mu = \$0.50$ and $\sigma_{\bar{x}} = \sigma_X/\sqrt{104} \doteq \1.5497 . The central limit theorem says that \bar{x} is approximately Normally distributed (with this mean and standard deviation). (d) Using this Normal approximation, $P(\bar{x} > \$1) \doteq P(Z > 0.32) = 0.3745$ (software: 0.3735).

5.23 (1 point)

5.23. The mean of three measurements has a N(125 mg/dl, 5.7735 mg/dl) distribution, and P(Z > 1.645) = 0.05 if Z is N(0, 1), so $L = 125 + 1.645 \cdot 5.7735 \doteq 134.5 \text{ mg/dl}$.

5.25 (1 point)

5.25. If W is total weight, and $\bar{x} = W/25$, then:

$$P(W > 5200) = P(\bar{x} > 208) \doteq P(Z > \frac{208 - 190}{5/\sqrt{25}}) = P(Z > 2.57) = 0.0051$$

Ch5.2

- 5.41 (3 points; one for each)
- (a) Separate flips are independent (coins have no "memory").
- (b) Separate flips are independent (coins have no "memory").
- (c) \hat{p} can vary from one set of observed data to another; it is not a parameter.
- 5.42 (3 points; one for each)
- 5.42. (a) X is a count; p̂ is a proportion. (b) The given formula is the standard deviation for a binomial proportion. The variance for a binomial count is np(1 − p). (c) The rule of thumb in the text is that np and n(1 − p) should both be at least 10. If p is close to 0 (or close to 1), n = 1000 might not satisfy this rule of thumb. (See also the solution to Exercise 5.22.)
- 5.44 (3 points; one for each)
- **5.44.** (a) This is not binomial; X is not a count of successes. (b) A B(20, p) distribution seems reasonable, where p (unknown) is the probability of a defective pair. (c) This should be (at least approximately) the B(n, p) distribution, where n is the number of students in our sample, and p is the probability that a randomly-chosen student eats at least five servings of fruits and vegetables.

5.46 (2 points; one for each)

5.46. (a) The B(20, 0.3) distribution (at least approximately). (b) $P(X \ge 8) = 0.2277$.

5.48 (2 points; one for each)

- **5.48.** X, the number who listen to streamed music daily, has the B(20, 0.25) distribution. (a) $\mu_X = np = 5$, and $\mu_{\hat{p}} = 0.25$. (b) With n = 200, $\mu_X = 50$ and $\mu_{\hat{p}} = 0.25$. With n = 2000, $\mu_X = 500$ and $\mu_{\hat{p}} = 0.25$. μ_X increases with n, while $\mu_{\hat{p}}$ does not depend on n.
- 5.53 (3 points; one for each)
- 5.53. (a) n = 4 and p = 1/4 = 0.25. (b) The distribution is below; the histogram is on the right. (c) $\mu = np = 1$.

x	0	- 1	2	3	4
P(X = x)	.3164	.4219	.2109	.0469	.0039

- 5.58 (4 points; one for each)
- **5.58.** (a) $\hat{p} = \frac{294}{400} = 0.735$. (b) With p = 0.8, $\sigma_{\hat{p}} = \sqrt{(0.8)(0.2)/400} = 0.02$. (c) Still assuming that p = 0.8, we would expect that about 95% of the time, \hat{p} should fall between 0.76 and 0.84. (d) It appears that these students prefer this type of course less than the national average. (The observed value of \hat{p} is quite a bit lower than we would expect from a N(0.8, 0.2) distribution, which suggests that it came from a distribution with a lower mean.)

5.62 (4 points; one for each) **5.62.** (a) $\mu = (1200)(0.75) = 900$ and Continuity correction $\sigma = \sqrt{225} = 15$ students. (b) $P(X \ge 1)$ Table Software Software Table Normal Normal Normal 800) $\doteq P(Z \ge -6.67) = 1$ (essentially). Normal 0.9417 0.9379 0.9418 0.9382 (c) $P(X \ge 951) \doteq P(Z \ge 3.4) = 0.0003$. (d) With n = 1300, $P(X \ge 951) \doteq P(Z \ge -1.54) = 0.9382$. Other answers are shown in the table on the right.

5.68 (3 points; one for each)

5.68. (a)
$$P(\text{first} \boxdot \text{appears on toss } 2) = \left(\frac{5}{6}\right) \left(\frac{1}{6}\right) = \frac{5}{36}.$$

(b) $P(\text{first} \boxdot \text{appears on toss } 3) = \left(\frac{5}{6}\right) \left(\frac{5}{6}\right) \left(\frac{1}{6}\right) = \frac{25}{216}.$
(c) $P(\text{first} \boxdot \text{appears on toss } 4) = \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right).$
 $P(\text{first} \boxdot \text{appears on toss } 5) = \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right).$

5.69 (1 point)

5.69. Y has possible values 1, 2, 3, ..., $P(\text{first} \subseteq \text{appears on toss } k) = \left(\frac{5}{6}\right)^{k-1} \left(\frac{1}{6}\right)$.