5.8 (3 points; one for each)
5.8. (a) The distribution of \bar{x} is approximately Normal. (The distribution of observed values - that is, the population distribution-is unaffected by the sample size.) (b) \bar{x} is within $\mu \pm 2 \sigma / \sqrt{n}$ about 95% of the time. (c) The (distribution of the) sample mean \bar{x} is approximately Normal. (μ is not random; it is just a number, albeit typically an unknown one.)
5.10 (3 points; one for each)
5.10. (a) $\sigma_{\bar{x}}=\sigma / \sqrt{ } 200 \doteq 0.08132$. (b) With $n=200, \bar{x}$ will be within ± 0.16 (about 10 minutes) of $\mu=7.02$ hours. (c) $P(\bar{x} \leq 6.9)=P\left(Z \leq \frac{6.9-7.02}{0.08132}\right) \doteq P(Z \leq-1.48) \doteq$ 0.0694 .

5.11 (3 points; one for each)

5.11. (a) With $n=200$, the 95% probability range was about ± 10 minutes, so need a larger sample size. (Specifically, to halve the range, we need to roughly quadruple the sample size.) (b) We need $2 \sigma_{\bar{x}}=\frac{5}{60}$, so $\sigma_{\bar{x}} \doteq 0.04167$. (c) With $\sigma=1.15$, we have $\sqrt{n}=\frac{1.15}{0.04167}=27.6$, so $n=761.76-$ use 762 students.

5.12 (2 points; one for each)

5.12. (a) The standard deviation is $\sigma / \sqrt{ } 10=280 / \sqrt{ } 10 \doteq 88.5438$ seconds. (b) In order to have $\sigma / \sqrt{n}=15$ seconds, we need $\sqrt{n}=\frac{280}{15}$, so $n \doteq 348.4$-use $n=349$.
5.14 (2 points; one for each)
5.14. (a) For this exercise, bear in mind that the actual distribution for a single song length is definitely not Normal; in particular, a Normal distribution with mean 350 seconds and standard deviation 280 seconds extends well below 0 seconds. The Normal curve for \bar{x} should be taller by a factor of $\sqrt{10}$ and skinnier by a factor of $1 / \sqrt{10}$ (although that tech-
 nical detail will likely be lost on most students). (b) Using a $N(350,280)$ distribution, $1-P(331<X<369) \doteq 1-P(-0.07<Z<0.07) \doteq 0.9442$. (c) Using a $N(350,88.5438)$ distribution, $1-P(331<X<369) \doteq 1-P(-0.21<Z<0.21) \doteq 0.8336$.

5.19 (2 points; one for each)

5.19. (a) $\mu_{\bar{x}}=0.5$ and $\sigma_{\bar{x}}=\sigma / \sqrt{ } 50=0.7 / \sqrt{ } 50 \doteq 0.09899$. (b) Because this distribution is only approximately Normal, it would be quite reasonable to use the 68-95-99.7 rule to give a rough estimate: 0.6 is about one standard deviation above the mean, so the probability should be about 0.16 (half of the 32% that falls outside ± 1 standard deviation). Alternatively, $P(\bar{x}>0.6) \doteq P\left(Z>\frac{0.6-0.5}{0.09899}\right)=P(Z>1.01)=0.1562$.

5.21(2 points; one for each)

5.21. Let X be Sheila's measured glucose level. (a) $P(X>140)=P(Z>1.5)=0.0668$.
(b) If \bar{x} is the mean of three measurements (assumed to be independent), then \bar{x} has a $N(125,10 / \sqrt{3})$ or $N(125 \mathrm{mg} / \mathrm{dl}, 5.7735 \mathrm{mg} / \mathrm{dl})$ distribution, and $P(\bar{x}>140)=P(Z>$ $2.60)=0.0047$.

5.22 (4 points; one for each)

5.22. (a) $\mu_{X}=(\$ 500)(0.001)=\$ 0.50$ and $\sigma_{X}=\sqrt{249.75} \doteq \$ 15.8035$. (b) In the long run, Joe makes about 50 cents for each $\$ 1$ ticket. (c) If \bar{x} is Joe's average payoff over a year, then $\mu_{\bar{x}}=\mu=\$ 0.50$ and $\sigma_{\bar{x}}=\sigma_{X} / \sqrt{104} \doteq \$ 1.5497$. The central limit theorem says that \bar{x} is approximately Normally distributed (with this mean and standard deviation). (d) Using this Normal approximation, $P(\bar{x}>\$ 1) \doteq P(Z>0.32)=0.3745$ (software: 0.3735).

5.23 (1 point)

5.23. The mean of three measurements has a $N(125 \mathrm{mg} / \mathrm{dl}, 5.7735 \mathrm{mg} / \mathrm{dl})$ distribution, and $P(Z>1.645)=0.05$ if Z is $N(0,1)$, so $L=125+1.645 \cdot 5.7735 \doteq 134.5 \mathrm{mg} / \mathrm{dl}$.
5.25 (1 point)
5.25. If W is total weight, and $\bar{x}=W / 25$, then:

$$
P(W>5200)=P(\bar{x}>208) \doteq P\left(Z>\frac{208-190}{5 / \sqrt{25}}\right)=P(Z>2.57)=0.0051
$$

Ch5.2

5.41 (3 points; one for each)
(a) Separate flips are independent (coins have no "memory").
(b) Separate flips are independent (coins have no "memory").
(c) \hat{p} can vary from one set of observed data to another; it is not a parameter.

5.42 (3 points; one for each)

5.42. (a) X is a count; \hat{p} is a proportion. (b) The given formula is the standard deviation for a binomial proportion. The variance for a binomial count is $n p(1-p)$. (c) The rule of thumb in the text is that $n p$ and $n(1-p)$ should both be at least 10 . If p is close to 0 (or close to 1), $n=1000$ might not satisfy this rule of thumb. (See also the solution to Exercise 5.22.)
5.44 (3 points; one for each)
5.44. (a) This is not binomial; X is not a count of successes. (b) A $B(20, p)$ distribution seems reasonable, where p (unknown) is the probability of a defective pair. (c) This should be (at least approximately) the $B(n, p)$ distribution, where n is the number of students in our sample, and p is the probability that a randomly-chosen student eats at least five servings of fruits and vegetables.
5.46 (2 points; one for each)
5.46. (a) The $B(20,0.3)$ distribution (at least approximately). (b) $P(X \geq 8)=0.2277$.
5.48 (2 points; one for each)
5.48. X, the number who listen to streamed music daily, has the $B(20,0.25)$ distribution.
(a) $\mu_{X}=n p=5$, and $\mu_{\hat{p}}=0.25$. (b) With $n=200, \mu_{X}=50$ and $\mu_{\hat{p}}=0.25$. With $n=2000, \mu_{X}=500$ and $\mu_{\hat{p}}=0.25$. μ_{X} increases with n, while $\mu_{\hat{p}}$ does not depend on n.

5.53 (3 points; one for each)

5.53. (a) $n=4$ and $p=1 / 4=0.25$. (b) The distribution is below; the histogram is on the right. (c) $\mu=n p=1$.

x	0	1	2	3	4
$P(X=x)$.3164	.4219	.2109	.0469	.0039

5.58 (4 points; one for each)
5.58. (a) $\hat{p}=\frac{294}{400}=0.735$. (b) With $p=0.8, \sigma_{\hat{p}}=\sqrt{(0.8)(0.2) / 400}=0.02$. (c) Still assuming that $p=0.8$, we would expect that about 95% of the time, \hat{p} should fall between 0.76 and 0.84 . (d) It appears that these students prefer this type of course less than the national average. (The observed value of \hat{p} is quite a bit lower than we would expect from a $N(0.8,0.2)$ distribution, which suggests that it came from a distribution with a lower mean.)
5.62 (4 points; one for each)
5.62. (a) $\mu=(1200)(0.75)=900$ and $\sigma=\sqrt{225}=15$ students. (b) $P(X \geq$ 800) $\doteq P(Z \geq-6.67)=1$ (essentially).
(c) $P(X \geq 951) \doteq P(Z \geq 3.4)=0.0003$.

	Continuity correction		
Table	Software	Table	Software
Normal	Normal	Normal	Normal
0.9382	0.9379	0.9418	0.9417

(d) With $n=1300, P(X \geq 951) \doteq P(Z \geq-1.54)=0.9382$. Other answers are shown in the table on the right.
5.68 (3 points; one for each)
5.68. (a) P (first \square appears on toss 2) $=\left(\frac{3}{6}\right)\left(\frac{1}{6}\right)=\frac{3}{36}$.
(b) P (first \square appears on toss 3$)=\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)=\frac{25}{216}$.
(c) P (first \square appears on toss 4$)=\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)$.
$P($ first \square appears on toss 5$)=\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)$.
5.69 (1 point)
5.69. Y has possible values $1,2,3, \ldots . P$ (first \square appears on toss $k)=\left(\frac{5}{6}\right)^{k-1}\left(\frac{1}{6}\right)$.

