2019Spring-ST305-HW4-Solution

(Total points: 36)

Ch 4.2: 21, 25, 26, 28, 31, 35, 36

4.21 (1 point)

Given that there are 5 different links. There will be 6 possible links in the web page. There will be links for all given 5 links and there will be another link to leave the page. Hence, the sample space for the outcome of a visitor to the Web page is $\{\operatorname{link} 1$, link2, link3, link4, link5, leave\}.
4.25 (2 points: 1 for each)
(a) The given probabilities have sum 0.97 , so $P($ type $A B)=0.03$.
(b) $P($ type 0 or $B)=0.44+0.11=0.55$.

4.26 (2 points: 1 for each)

$P($ both are type 0$)=(0.44)(0.52)=0.2288$;
$P($ both are the same type $)=(0.42)(0.35)+(0.11)(0.10)+(0.03)(0.03)+(0.44)(0.52)=$ 0.3877 .
4.28 (2 points: 1 for each)
(a) $P($ French $)=1-P($ English $)-P($ Asian \mid Pacific $)-P($ Other $)=1-0.59-0.07-0.11=$ 0.23 .
(b) $P($ Canadian's mother tongue is not English $)=1-P($ English $)=1-0.59=0.41$.

4.31(1 point)

4.31. For example, the probability for A-positive blood is $(0.42)(0.84)=0.3528$ and for

A-negative $(0.42)(0.16)=0.0672$.

Blood type	$\mathrm{A}+$	$\mathrm{A}-$	$\mathrm{B}+$	$\mathrm{B}-$	$\mathrm{AB}+$	$\mathrm{AB}-$	$\mathrm{O}+$	$\mathrm{O}-$
Probability	0.3528	0.0672	0.0924	0.0176	0.0252	0.0048	0.3696	0.0704

4.35 (1 point)

4.35. P (none are O-negative) $=(1-0.07)^{10} \doteq 0.4840$, so P (at least one is

O-negative) $\doteq 1-0.4840=0.5160$.

4.36 (1 point)

If we assume that each site is independent of the others (and that they can be considered as a random sample from the collection of sites referenced in scientific journals), then

$$
P(\text { all seven are still good })=0.87^{7}=0.3773
$$

Ch 4.3: 55, 56, 58, 62, 63, 64
4.55 (3 points: 1 for each)
4.55. (a) Histogram on the right. (b) "At least one nonword error" is the event " $X \geq 1$ " (or " $X>0$ "). $P(X \geq 1)=$ $1-P(X=0)=0.9$. (c) " $X \leq 2$ " is "no more than two nonword errors," or "fewer than three nonword errors."

$$
\begin{aligned}
P(X \leq 2)=0.7 & =P(X=0)+P(X=1)+P(X=2) \\
& =0.1+0.3+0.3 \\
P(X<2)=0.4 & =P(X=0)+P(X=1)=0.1+0.3
\end{aligned}
$$

4.56 (2 points: 1 for each)
4.56. (a) Curve on the right. A good procedure is to draw the curve first, locate the points where the curvature changes, then mark the horizontal axis. Students may at first make mistakes like drawing a half-circle instead of the correct "bell-shaped" curve or being careless about
 locating the standard deviation. (b) About 0.81: $P(Y \leq 280)=P\left(\frac{Y-266}{16} \leq \frac{280-266}{16}\right)=$ $P(Z \leq 0.875)$. Software gives 0.8092 ; Table A gives 0.8078 for 0.87 and 0.8106 for 0.88 (so the average is again 0.8092).
4.58 (1 point)
4.58. The possible values of Y are $1,2,3, \ldots, 12$, each with probability $1 / 12$. Aside from drawing a diagram showing all the possible combinations, one can reason that the first (regular) die is equally likely to show any number from 1 through 6 . Half of the time, the second roll shows 0 , and the rest of the time it shows 6 . Each possible outcome therefore has probability $\frac{1}{6} \cdot \frac{1}{2}$.
4.62 (5 points: 1 for each)
(a) $P(X \geq 0.30)=0.7$.
(b) $P(X=0.30)=0$.
(c) $P(0.30<X<1.30)=P(0.30<X<1)=0.7$.
(d) $P(0.20 \leq X \leq 0.25$ or $0.7 \leq X \leq 0.9)=0.05+0.2=0.25$.
(e) $P(\operatorname{not}[0.4 \leq \mathrm{X} \leq 0.7])=1-P(0.4 \leq X \leq 0.7)=1-0.3=0.7$.

4.63 (4 points: 1 for each)

4.63. (a) The height should be $\frac{1}{2}$ since the area under the curve must be 1. The density curve is at the right. (b) $P(Y \leq 1.6)=\frac{1.6}{2}=0.8$. (c) $P(0.5<Y<1.7)=$ $\frac{1.2}{2}=0.6$. (d) $P(Y \geq 0.95)=\frac{1.05}{2}=0.525$.

4.64 (3 points: 1 for each)
(a)

Calculate the area under the curve as follows:

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} b h \quad[b=\text { base and } h=\text { height }] \\
& \left.=\frac{1}{2}(2)(1) \quad \text { [From the triangle }\right] \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

(b)

Calculate $P(Y<1)$ as follows:

$$
\begin{aligned}
P(Y<1) & =\frac{1}{2} b h \\
& =\frac{1}{2}(1)(1) \quad \text { [From the below graph] } \\
& =\frac{1}{2}
\end{aligned}
$$

Required area is shown in below.

(c)

Calculate the probability that Y is greater than 0.6

$$
\begin{aligned}
P(Y>0.6) & =1-P(Y \leq 0.6) \\
& =1-\frac{1}{2}(0.6)(0.6) \\
& =1-0.18 \quad[\text { From the below graph }] \\
& =0.82
\end{aligned}
$$

Required area is shown in below.

Ch 4.4: 75, 76, 78, 82, 93, 94

4.75 (1 point)

The average grade is $\mu=(0)(0.05)+(1)(0.04)+(2)(0.20)+(3)(0.40)+(4)(0.31)=2.88$.

4.76 (1 point)

4.76. The means are

$$
\begin{aligned}
(0)(0.1)+(1)(0.3)+(2)(0.3)+(3)(0.2)+(4)(0.1) & =1.9 \text { nonword errors and } \\
(0)(0.4)+(1)(0.3)+(2)(0.2)+(3)(0.1) & =1 \text { word error }
\end{aligned}
$$

4.78 (1 point)
4.78. In the solution to Exercise 4.75, we found the average grade was $\mu=2.88$, so

$$
\begin{aligned}
\sigma^{2}=(0-2.88 &)^{2}(0.05)+(1-2.88)^{2}(0.04) \\
& +(2-2.88)^{2}(0.2)+(3-2.88)^{2}(0.4)+(4-2.88)^{2}(0.31)=1.1056
\end{aligned}
$$

and the standard deviation is $\sigma=\sqrt{1.1056} \doteq 1.0515$.
4.82 (2 points: 1 for each)
4.82. Let N and W be nonword and word error counts. In Exercise 4.76, we found $\mu_{N}=1.9$ errors and $\mu_{W}=1$ error. The variances of these distributions are $\sigma_{N}^{2}=1.29$ and $\sigma_{W}^{2}=1$, so the standard deviations are $\sigma_{N} \doteq 1.1358$ errors and $\sigma_{W}=1$ error. The mean total error count is $\mu_{N}+\mu_{W}=2.9$ errors for both cases. (a) If error counts are independent (so that $\rho=0$), $\sigma_{N+W}^{2}=\sigma_{N}^{2}+\sigma_{W}^{2}=2.29$ and $\sigma_{N+W} \doteq 1.5133$ errors. (Note that we add the variances, not the standard deviations.) (b) With $\rho=0.5$, $\sigma_{N+W}^{2}=\sigma_{N}^{2}+\sigma_{W}^{2}+2 \rho \sigma_{N} \sigma_{W} \doteq 2.29+1.1358=3.4258$ and $\sigma_{N+W} \doteq 1.8509$ errors.
4.93 (2 points; one for each)
4.93. (a) Add up the given probabilities and subtract from 1 ; this gives P (man does not die in the next five years) $=0.99749$. (b) The distribution of income (or loss) is given below. Multiplying each possible value by its probability gives the mean intake $\mu \doteq \$ 623.22$.

Age at death	21	22	23	24	25	Survives
Loss or income	$-\$ 99,825$	$-\$ 99,650$	$-\$ 99,475$	$-\$ 99,300$	$-\$ 99,125$	$\$ 875$
Probability	0.00039	0.00044	0.00051	0.00057	0.00060	0.99749

4.94 (1 point)
4.94. The mean μ of the company's "winnings" (premiums) and their "losses" (insurance claims) is positive. Even though the company will lose a large amount of money on a small number of policyholders who die, it will gain a small amount on the majority. The law of large numbers says that the average "winnings" minus "losses" should be close to μ, and overall the company will almost certainly show a profit.

