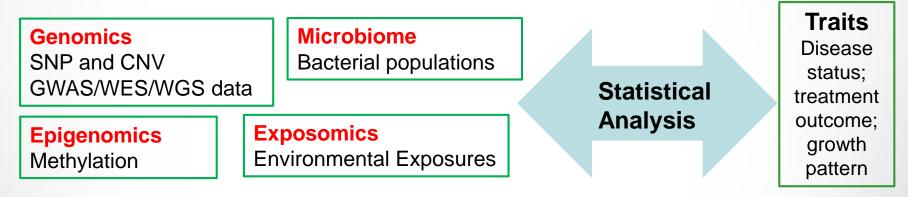

Research Projects

Jung-Ying Tzeng

September 26, 2018


About me

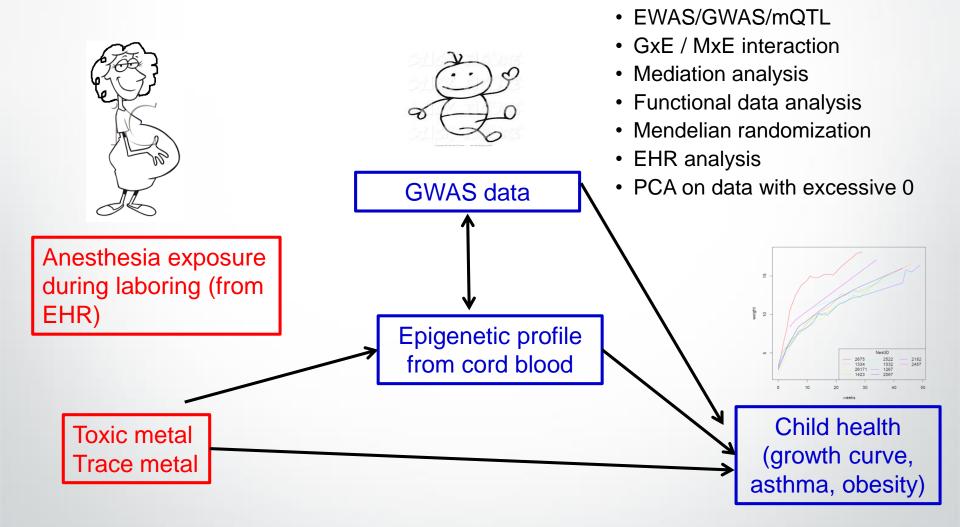
- Professor, Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh NC, USA
- Office: Ricks 305
- Courses: ST511, PP810, ST721 Genetic Data Analysis (2019 Fall)
- Research focus:
 - Statistical genetics and genetic epidemiology

Research Focus

 Focus heavily on developing and applying statistical methods for association analysis to understand the impact of genomic variables on traits

- Two general themes
 - To deal with predictors that are correlated, high dimensional, weak signals
 - E.g., Similarity based regression, random effects modeling, kernel machine regression, variance component tests, penalized regression
 - Dimension reduction, latent feature extraction
 - E.g., factor analysis, principal component analysis, penalized least square regression, tensor regression

Rotation projects


- Need to talk with you individually and assign projects based on your research interests and stat/programming background
- Typically involves
 - Literature review
 - Data analysis
 - Simulation studies
- Willing to learn and devote time
- Even greater if you know
 - Some programming skills, e.g., R
 - Basic statistic analysis approaches, e.g., regressions (and wouldn't mind to take more advanced statistical courses)

Newborn Epigenetic Study (with PI Dr. Cathrine Hoyo)

NC STATE UNIVERSITY

Newborn Epigenetic Study (NEST)

Goal: The impact of maternal exposure during pregnancy on child health

Microbiome data analysis

7

Microbiome association analysis

• Motivating study:

A clinical trial to evaluate if home care can preserve the natural gut microbiota and decrease treatment-related mortality for hematopoietic cell transplantation (HCT)

- Evaluate the association between longitudinal microbiome profile and treatment outcome
- Identify specific taxa associated with outcome
- Challenges:
 - a) Bacterial taxa abundance are measured in relative compositions (i.e., the abundance of all taxa in a sample sum to 1)
 - b) Many taxa with zero counts within a sample
 - c) Hundreds or thousands of taxa
 - d) Taxa are phylogenetically related

Analysis on multi-platform data

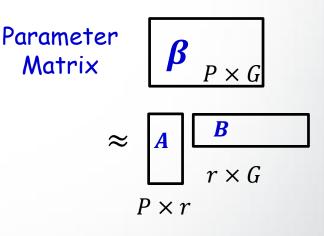
Multi-platform Gene-Set Analysis

- <u>"Meta"-based approaches</u> can be applied on studies with different subjects
- Joint modeling approaches tend to have higher power and more informative than "meta"-based approaches
- Challenges of joint modeling methods: Moderate sample sizes with large number of variables

	Gene Platform	1	2		G
	1				
	2				
	:				
	Р				
$g(EY_i) = Z_i \gamma + \sum_{i=1}^{P} \sum_{j=1}^{G} X_{pg,i} \times \beta_{pg}$					

p=1 q=1 g=1

X_i for multi-platform data


NC STATE UNIVERSITY

Low-Rank Tensor Model for Multiplatform Gene-Set Analysis

- Low-rank tensor regression (Zhou et al. 2013)
 - Genomic variable X_i of multiplatform data has a matrix structure
 - Parameter β_{pg} 's also form a $P \times G$ matrix, i.e.,

 $\boldsymbol{\beta} = \begin{bmatrix} \beta_{11} & \cdots & \beta_{1G} \\ \vdots & \cdots & \vdots \\ \beta_{P1} & \cdots & \beta_{PG} \end{bmatrix}$

- Can use low-rank approximation to β reduce the # of parameters

Data Matrix

 $\mathbf{X}_{i}_{P \times G}$

Other projects

- Association analysis with rare CNVs
- GWAS with summary statistics, e.g., meta analysis, mediation analysis
- Rare variant association analysis incorporating 3D structural information
 - Variants within a gene --- incorporating 3D protein structure
 - WGS data --- incorporating Hi-C information

Thank you