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11.1 Inference for Multiple
Regression

= Population Multiple Regression Model

= Data for Multiple Regression

= Multiple Linear Regression Model

= Confidence Intervals and Significance Tests

= Squared Multiple Correlation R?




Population Multiple Regression -
Equation

Up to this point we have considered, in detail, the linear regression model
In one explanatory variable x.

Yi=Po* Bixi+¢
Usually more complex linear models are needed in practical situations.

There are many problems in which a knowledge of more than one
explanatory variable is necessary in order to obtain a better understanding
and better prediction of a particular response.

In multiple regression, the response variable y depends on p explanatory

variables,  x,,x,,::, X,

Wy = Bo +BiXi1 + BoXip+ =+ B.Xi,



Data for Multiple Regression B

The data for a simple linear regression problem consist of n
observations (x,,y,) of the two variables.

Data for multiple linear regression consist of the value of a
response variable y and p explanatory variables (X;,Xx,,"*", xp) on
n cases.

We write the data and enter them into software in the form:

Variables
Case ) & X5 X, y
1 X1 X12 X1p Y1
2 X1 X22 Xop Yo




Multiple Linear Regression Model |1

The statistical model for multiple linear regression is
i = Bo + BiXis +BoXip ¥ BoXp t €
fori=1,2,...,n.
The mean response py, is a linear function of the explanatory variables:
Hy = Bo + BiXis +BoXip + - BoX;,
The deviations g; are independent and Normally distributed N(0,0).

The parameters of the model are 3, B, . B, and s.



Estimation of the Parameters -

Select a random sample of n individuals for which p + 1 variables are
measured (X, ..., X,, ¥). The least-squares regression method
minimizes the sum of squared deviations e; = (y;, — y;) to express y as a
linear function of the p explanatory variables:

Yi = byt bxyt... bpx,-p

As with simple linear regression, the constant b, is the y-intercept.

m The regression coefficients (b,,..., bp) reflect the unique association
of each independent variable with the y variable. They are
analogous to the slope in simple regression.

m The parameter s? measures the variability of the responses about
the population regression equation. The estimator is:

, 2e 203

:n—p—l_ n—p-1
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Confidence Interval for f, B

Estimating the regression parameters g,, ... ,,Bj, ,,Bp IS a case of one-
sample inference with unknown population variance.

We rely on the t distribution, with n — p — 1 degrees of freedom.

Alevel C confidence interval for §; is:

b; + t* SE,;
where SE,; is the standard error of b; and t" is the ¢ critical for the

t((n — p — 1) distribution with area C between —t* and +t*.



Significance Test for S, B

To test the hypothesis H,: ,Bj= O versus a one- or two-sided alternative,

we calculate the t statistic t= bjl SEbj

which has the t (n — p — 1) distribution to find the p-value of the test.

Note: Software typically Hy B> 0is AT> 0

provides two-sided p-values.

Important: this tests the HayBi<0is AT <0

significance of ONE variable
AFTER adjusting for the effects
of all others!!!

bbb

Hy: B #01is 2T > |4))

It
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ANOVA F-test for Multiple Regression IR

For a multiple linear relationship the ANOVA tests the hypotheses
Ho: B1=B,=...=B,=0 versus Hy: atleastone §# 0
by computing the F statistic. F= MSM / MSE

When H,is true, F follows
the F(p, n — p — 1) distribution.
The p-value is P(F > f).

F

A significant p-value doesn’t mean that all p explanatory variables

have a significant influence on y—only that at least one does.
10



ANOVA Table for Multiple Regression-

Source Sum of squares SS df Mean square MS F P-value
Model Z(J} _y)2 p SSM/DFM MSM/MSE | Tail area above F
1
Error 2( A N2 n-p-1 SSE/DFE
Yi=¥)
Total

Z(yi_y)z -

SST = SSM + SSE

DFT = DFM + DFE
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Squared Multiple Correlation R? B

Just as with simple linear regression, R?, the squared multiple
correlation, is the proportion of the variation in the response variable

y that is explained by the model.

,_ 23i=¥) _ sSMode
Z(yl y) SSTOtal

In the particular case of multiple linear regression, the model is all p
explanatory variables taken together.

The square root of R?, called the multiple correlation coefficient, is
the correlation between the observations and the predicted values.

12



11.2 A Case Study

= Preliminary Analysis

= Relationships Between Pairs of Variables
= Regression on High School Grades

" |nterpretation of the Results

= Refining the Results

= Regression Using All Variables

= Test for a Collection of Regression Coefficients
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Preliminary Analysis

The data on 224 first-year computer science majors at a large university in
a given year for each student include:

* Cumulative GPA after two semesters at the university (y, response variable)

* SAT math score (SATM, x1, explanatory variable)

* SAT verbal score (SATV, x2, explanatory variable)

* Average high school grade in math (HSM, x3, explanatory variable)

* Average high school grade in science (HSS, x4, explanatory variable)

* Average high school grade in English (HSE, x5, explanatory variable)

Here are the summary statistics for these data given by software SAS:

Variable

Std Dev

Minimum

Maximum

2.6352232
595.2857143
504.5491071

8.3214286

8.0892857

8.0937500

0.7793949
86.4014437
92.6104591

1.6387367

1.6996627

1.5078736

0.1200000
300.0000000
285.0000000

2.0000000

3.0000000

3.0000000

4.0000000
800.0000000
760.0000000

10.0000000
10.0000000
10.0000000



Relationships Between Pairs of
Variables

The first step in multiple linear regression is to study all pair-wise

relationships between the p + 1 variables. Here is the SAS output for all

pair-wise correlation analyses (value of r and two-sided p-value of H,: p = 0).

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 224

GPA

SATM

SATV

HSM

HSS

HSE

GPA

1.00000
0.0

0.25171
0.0001

0.114459
0.0873

0.43650
0.0001

0.32943
0.0001

0.28900
0.0001

SATM

0.25171
0.0001

1.00000
0.0

0.46394
0.0001

0.45351
0.0001

0.24048
0.0003

0.10828
0.1060

SATV

0.11449
0.0873

0.46394
0.0001

1.00000
0.0

0.22112
0.0009

0.26170
0.0001

0.24371
0.0002

HSM

0.43650
0.0001

0.45351
0.0001

0.22112
0.0009

1.00000
0.0

0.57569
0.0001

0.44689
0.0001

HSS

0.32943
0.0001

0.24048
0.0003

0.26170
0.0001

0.57569
0.0001

1.00000
0.0

0.57937
0.0001

HSE

0.28900
0.0001

0.10828
0.1060

0.24371
0.0002

0.44689
0.0001

0.57937
0.0001

1.00000
0.0
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Regression on High School Grades -

For simplicity, let’s first run a multiple linear regression using only the three high
school grade averages:

Dependent Variable: GPA

Source

Model
Error
C Total

Root MSE
Dep Mean
C.V.

Variable DF

INTERCEP
HSM
HSS
HSE

B R RR

Analysis of Variance

Sum of Mean

DF Squares Square
3 27.71233 9.23744
220 107.75046 0.48977

223 135.46279

0.69984 R-Square
2:63522 Adj R-sg
26.55711

Parameter Estimates

Parameter Standard
Estimate Error

0.589877 0.29424324
0.168567 0.03549214
0.034316 0.03755888
0.045102 0.03869585

0.2046
0.1937

F Value

18.861

T for HO:
Parameter=0

2.005
4.749
0.914
1.166

Prob>F

0.0001

Prob > |T|

0.0462

0.0001

0.3619
0.2451

P-value very
significant

R? is fairly small (20%)

HSM significant
HSS,HSEHOHG



Regression on High School Grades -

Dependent Variable: GPA
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F P-value very
Model 3 27.71233 9.23744 18.861 0.0001 significant
Error 220 107.75046 0.48977
C Total 223 135.46279
Root MSE 0.69984 R-Square 0.2046 R? is fairly
Dep Mean 2.63522 Adj R-sq 0.1937 small (20%)
c.V. 26.55711

The ANOVA for the multiple linear regression using only HSM, HSS, and HSE is
significant. At least one of the regression coefficients is significantly different

from zero.
R? is fairly small (0.205) =» only about 20% of the variations in cumulative GPA

can be explained by these high school scores. (Remember, a small p-value
does not imply a large effect.)

17



Interpretation of the Results

Parameter Estimates

Parameter
Variable DF Estimate
INTERCEP 1 0.589877
HSM 1 0.168567
HSS 1 0.034316
HSE 1 0.045102

O O O o

Standard
Error

.29424324
.03549214
.03755888
03869585

T for HO:
Parameter=0

2.005
4.749
0.914
1°166

Prob > |T|

0.0462
0.0001

0.3619

0.2451

HSM significant
HSS, HSE not

The tests of hypotheses for each b within the multiple linear regression reach

significance for HSM only.

We found a significant correlation between HSS and GPA when analyzed by
themselves, so why is b,gq nNot significant in the multiple regression equation?
Well, HSS and HSM are also significantly correlated.

When all three high school averages are used together in the multiple regression
analysis, only HSM contributes significantly to our ability to predict GPA.

18



Refining the Model

We now drop the least significant variable from the previous model: HSS.
Dependent Variable: GPA

Source

Model
Error
C Total

Root MSE
Dep Mean
CoV.

Variable DF

INTERCEP 1
HSM 1
HSE 1L

Analysis of Variance

Sum of Mean

DF Squares Square
2 27.30349 13.65175
221 108.15930 0.48941

223 135.46279
069958 R-Square
2.63522 Adj R-sqg

26.54718

Parameter Estimates

F Value

27 .894

0.2016 R2js small (20%)

0.1943

Parameter Standard T for HO:
Estimate Error Parameter=0
0.624228 0.29172204 2.140
0.182654 0.03195581 5.716
0.060670 0.03472914 1.747

Prob>F

0.0001

Prob > |T|

203356

0.0001

0.0820

P-value very
significant

HSM significant
HSE not

The conclusions are about the same. But notice that the actual regression
coefficients have changed. 4 cd GPA=.590+.169HSM+.045HSE+.034HSS
predicted GPA=.624+.183HSM+.061HSE

19



Refining the Model

Let’s run a multiple linear regression with the two SAT scores only.
Dependent Variable: GPA

Source

Model
Error
C Total

Root MSE
Dep Mean
€. V.

Variable DF

INTERCEP 1
SATM 1
SATV 1

Analysis of Variance

Sum of Mean

DF Squares Square
2 8.58384 4.29192
221 126.87895 0.57411

223 135.46279
0.75770 R-Square
2.63522 Adj R-sq

28.75287

Parameter Estimates

F Value Prob>F

7.476 0.0007

P-value very
significant

0.0634 R2is very small (6%)

0.0549

Parameter Standard T for HO:

Estimate Error Parameter=0 Prob > |T|

1.288677 0.37603684 3.427 0.0007

0.002283 0.00066291 3.444 0.0007
-0.000024562 0.00061847 -0.040 0.9684

SATM significant
SATV not

The ANOVA test for Bsamy @and Bsary IS significant. At least one is not zero.
R? is really small (0.06). Only 6% of GPA variation is explained by these tests.
When taken together, only SATM is a significant predictor of GPA (P 0.0007). 20



Regression Using All Variables

Dependent Variable: GPA

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F | P.yalue very
Model 5 28.64364 5.72873 11.691 0.0001 | Significant
Error 218 106.81914 0.49000
C Total 223 135.46279
Root MSE 0.70000 R-Square 0.2115 R2 fairly small (21%)
Dep Mean 2.63522 Adj R-sqg 0.1934
CiV. 26.56311
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 0.326719 0.39999643 0.817 0.4149
SATM 1 0.000944 0.00068566 1.376 0.1702
__SATV L -0.000408 0.00059189 -0.689
HSM 1 0.145961 0.03926097 3.718 0.0003|HSM significant
HSS 1 0.035905 0.03779841 0.950 0.3432
HSE 1l 0.055293 0.03956869 1,397 01637

The overall test is significant, but only the average high school math score (HSM) makes a
significant contribution in this model to predicting the cumulative GPA. This conclusion applies
to computer majors at this large university.

21



Test for a Collection of Regression -
Coefficients

Reqgression Statistics

| Multiple R 0.455837234
R Sguare 0.211450252
Adjusted R Square  0.193364279
Standard Error 0.699997195

Ohservations 224
ANOWA

df 55 s F signifcance F
|Regression 5 2864364489 5728729 1169138 5.06E-10
|Residual 218 106.8191439 0.489996
Total 223 1354627388

Coefficients | Standard Error t Stat Fvalue  Lower 955 upper 955

|intercept 03267168739 0.399996431 0.816604 0.414932 -0.4616356967 1.11507 4446
(HEM 0145961058 0039260974 3717714 0000256  0.068531358 0.223340801
|HSS 0.03590532 0037798412 0.949316 0345207  -0.03859183 0.11040247
|HSE 0.055292581 | 0.039568691 1.397382  0.163719 -0.022693622 0.133275785
| SATM 0.000643593 0000685657 1.376167 0170176 -0.000407774 0.002294359
=AY 0.00040785  0.0005391893 -0.63906 0.491515 -0.001574415  0.00075516
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Test for a Collection of Regression -
Coefficients

The regression equation is

GPA = 0.327 + 0.146 HSM + 0.0359HSS + 0.0553 HSE +0.000944 SATM -
0.000408SATV

Predictor Coef StDev T P
Constant 0.3267 0.4000 0.82 0.415
HSM 0.14596 0.03926 3.72 0.000
HSS 0.03591 0.03780 0.95 0.343
HSE 0.05529 0.03957 1.40 0.164
SATM 0.0009436 0.0006857 1.38 0.170
SATV -0.0004078 0.0005919 -0.69 0.492
S =0.7000 R-Sqg= 21.1% R-Sg(adj)= 19.3%

Analysis of Variance

Source DF SS MS F P
Regression 5 28.6436 5.7287 11.69 0.000
Error 218 106.8191 0.4900

Total 223 135.4628
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