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11.1 Inference for Multiple 
Regression 

§ Population Multiple Regression Model 

§ Data for Multiple Regression 

§ Multiple Linear Regression Model 

§ Confidence Intervals and Significance Tests 

§ Squared Multiple Correlation R2 
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Population Multiple Regression 
Equation 

Up to this point we have considered, in detail, the linear regression model 
in one explanatory variable x. 

yi = β0 + β1xi + εi 

Usually more complex linear models are needed in practical situations. 

There are many problems in which a knowledge of more than one 
explanatory variable is necessary in order to obtain a better understanding 
and better prediction of a particular response.  

In multiple regression, the response variable y depends on p explanatory 
variables,                         

µy = β0 +β1xi1 + β2xi2 + … βpxip  

pxxx  , , , 21 !
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Data for Multiple Regression 
The data for a simple linear regression problem consist of n 
observations            of the two variables. 

Data for multiple linear regression consist of the value of a 
response variable y and p explanatory variables                           on 
n cases. 

We write the data and enter them into software in the form: 

 

 

(xi,yi)

),,,( 21 pxxx !

Variables 

Case x1 x2 … xp y 

1 x11 x12 … x1p y1 

2 x21 x22 … x2p y2 

… … … … …  … 

n xn1 xn2 … xnp yn 
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The statistical model for multiple linear regression is

yi = β0 + β1xi1 +β2xi2 +…βpxip + εi 

for i = 1, 2, … , n. 

The mean response µy is a linear function of the explanatory variables: 

µy = β0 + β1xi1 +β2xi2 +…βpxip  

The deviations εi are independent and Normally distributed N(0,σ). 

The parameters of the model are β0, β1 … βp, and s. 

Multiple Linear Regression Model 
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Select a random sample of n individuals for which p + 1 variables are 
measured (x1 … , xp, y). The least-squares regression method  
minimizes the sum of squared deviations ei = (yi – ŷi) to express y as a 
linear function of the p explanatory variables: 

    ŷi   =  b0 + b1xi1 +… + bpxip 

As with simple linear regression, the constant b0 is the y-intercept.  

■ The regression coefficients (b1,…, bp) reflect the unique association 
of each independent variable with the y variable. They are 
analogous to the slope in simple regression.  

■ The parameter s2 measures the variability of the responses about 
the population regression equation. The estimator is: 

 

Estimation of the Parameters 

 

s2 =
ei

2∑
n − p −1

=
(yi − Ù y i)

2∑
n − p −1

7 



Confidence Interval for βj 

Estimating the regression parameters β0, … ,βj, … ,βp is a case of one-
sample inference with unknown population variance.  

We rely on the t distribution, with n – p – 1 degrees of freedom. 

A level C confidence interval for βj is:    

bj  ±  t* SEbj       

where SEbj   is the standard error of bj  and t* is the t critical for the 

t(n – p – 1) distribution with area C between –t* and +t*. 
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To test the hypothesis  H0: βj = 0 versus a one- or two-sided alternative, 

we calculate the t statistic   t = bj / SEbj   

which has the t (n – p – 1) distribution to find the p-value of the test. 

 
Note: Software typically 
provides two-sided p-values. 
 
 
 
Important: this tests the  
significance of ONE variable 
AFTER adjusting for the effects 
of all others!!! 

Significance Test for βj 
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For a multiple linear relationship the ANOVA tests the hypotheses  

H0: β1 = β2 = … = βp = 0    versus HA: at least one β ≠ 0 

by computing the F statistic: F = MSM / MSE 

 

When H0 is true, F follows  
the F(p, n − p − 1) distribution.  
The p-value is P(F > f ).  

 
 
 
A significant p-value doesn’t mean that all p explanatory variables 
have a significant influence on y—only that at least one does. 

ANOVA F-test for Multiple Regression 
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ANOVA Table for Multiple Regression 

Source Sum of squares SS df Mean square MS F P-value 

Model p SSM/DFM MSM/MSE Tail area above F 

Error n − p − 1 SSE/DFE 

Total n − 1 

∑ − 2)ˆ( yyi

∑ − 2)( yyi

∑ − 2)ˆ( ii yy

SST = SSM + SSE DFT = DFM + DFE 
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Squared Multiple Correlation R2 

Just as with simple linear regression, R2, the squared multiple 
correlation, is the proportion of the variation in the response variable 
y that is explained by the model. 

 

 

In the particular case of multiple linear regression, the model is all p 
explanatory variables taken together. 

The square root of R2, called the multiple correlation coefficient, is 
the correlation between the observations and the predicted values. 
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11.2 A Case Study 

§ Preliminary Analysis 

§ Relationships Between Pairs of Variables 

§ Regression on High School Grades 

§  Interpretation of the Results 

§ Refining the Results 

§ Regression Using All Variables 

§ Test for a Collection of Regression Coefficients 
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The data on 224 first-year computer science majors at a large university in 
a given year for each student include: 
 

* Cumulative GPA after two semesters at the university (y, response variable) 

* SAT math score (SATM, x1, explanatory variable) 
* SAT verbal score (SATV, x2, explanatory variable) 

* Average high school grade in math (HSM, x3, explanatory variable) 
* Average high school grade in science (HSS, x4, explanatory variable) 

* Average high school grade in English (HSE, x5, explanatory variable) 
 

Here are the summary statistics for these data given by software SAS: 

Preliminary Analysis 
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The first step in multiple linear regression is to study all pair-wise  
relationships between the p + 1 variables. Here is the SAS output for all  
pair-wise correlation analyses (value of r and two-sided p-value of H0: ρ = 0). 

Relationships Between Pairs of 
Variables 
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For simplicity, let’s first run a multiple linear regression using only the three high 
school grade averages: 

P-value very 
significant 

R2 is fairly small (20%) 

HSM significant 

HSS, HSE not 

Regression on High School Grades 
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The ANOVA for the multiple linear regression using only HSM, HSS, and HSE is 
significant. At least one of the regression coefficients is significantly different 
from zero. 
R2 is fairly small (0.205) è only about 20% of the variations in cumulative GPA 
can be explained by these high school scores. (Remember, a small p-value 
does not imply a large effect.) 

P-value very 
significant 

R2 is fairly  
small (20%) 

Regression on High School Grades 
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The tests of hypotheses for each b within the multiple linear regression reach 
significance for HSM only.  
 

We found a significant correlation between HSS and GPA when analyzed by 
themselves, so why is bHSS not significant in the multiple regression equation? 
Well, HSS and HSM are also significantly correlated. 

HSM significant 

HSS, HSE not 

When all three high school averages are used together in the multiple regression 
analysis, only HSM contributes significantly to our ability to predict GPA.  

Interpretation of the Results 
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P-value very 
significant 

R2 is small (20%) 

HSM significant 
HSE not 

We now drop the least significant variable from the previous model: HSS. 

The conclusions are about the same. But notice that the actual regression 
coefficients have changed. predicted GPA=.590+.169HSM+.045HSE+.034HSS

predicted GPA=.624+.183HSM+.061HSE

Refining the Model 
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P-value very 
significant 

R2 is very small (6%) 

SATM significant 
SATV not 

Let’s run a multiple linear regression with the two SAT scores only. 

The ANOVA test for βSATM and βSATV is significant. At least one is not zero. 
R2 is really small (0.06). Only 6% of GPA variation is explained by these tests. 
When taken together, only SATM is a significant predictor of GPA (P 0.0007). 

Refining the Model 
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The overall test is significant, but only the average high school math score (HSM) makes a 
significant contribution in this model to predicting the cumulative GPA. This conclusion applies 
to computer majors at this large university. 

P-value very 
significant 

R2 fairly small (21%) 

HSM significant 

Regression Using All Variables 
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Test for a Collection of Regression 
Coefficients 
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Test for a Collection of Regression 
Coefficients 
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