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Objectives (IPS Chapter 10.1) 

Simple linear regression 

p  Statistical model for linear regression  

p  Estimating the regression parameters 

p  Confidence interval for regression parameters  

p  Significance test for the slope  

p  Confidence interval for µy 

p  Prediction intervals 



The data in a scatterplot are a random 
sample from a population that may 

contain a linear relationship between x 
and y. Different sample, different plot. 

€ 

ˆ y = 0.125x − 41.4

We want to describe the population mean 
response µy as a function of the explanatory 
variable X:  µy = β0 + β1x, 
 

and to assess whether the observed relationship 
is statistically significant (not entirely explained 
by chance events due to random sampling). 



Statistical model for linear regression 
In the population, the linear regression equation is µy = β0 + β1x. 
 

Sample data then fits the model: 
 
     Data =         fit       +   residual 
        yi   =  (β0 + β1xi)  +      (εi)  

 
 

where the εi are  
independent and  
Normally distributed N(0,σ). 
 
Linear regression assumes equal variance of y  
(σ is the same for all values of x). 



µy = β0 + β1x  

The intercept β0, the slope β1, and the standard deviation σ of y are the 

unknown parameters of the regression model. We rely on the sample 

data to provide unbiased estimates of these parameters. 
 

p  The value of ŷ from the least-squares regression line (remember Chapter 

2?) is really a prediction of the mean value of y (µy) for a given value of x.  

p  The least-squares regression line (ŷ = b0 + b1x) obtained from sample data 

is the best estimate of the true population regression line (µy = β0 + β1x).  

ŷ: unbiased estimate for mean response µy 

b0: unbiased estimate for intercept β0 

b1: unbiased estimate for slope β1

Estimating the parameters 



The estimate of σ is calculated from the residuals, ei = yi – ŷi : 

 

 

 

 

s is an estimate of the population standard deviation σ. 

 

The population standard deviation σ 
for y at any given value of x represents 
the spread of the normal distribution of 
the εi around the mean µy . 

s =
ei

2∑
n − 2

 = 
(yi − ŷi )

2∑
n − 2



Conditions for inference 
p  The observations are independent. 

p  The relationship is linear. 

p  The standard deviation of y, σ, is the same for all values of x. 

p  The response y varies normally  
around its mean. 



Using residual plots to check for regression validity 

The residuals give useful information about the contribution of 

individual data points to the overall pattern of scatter.  

 

We view the residuals in  

a residual plot of ei vs. xi   

 

 

If residuals are scattered randomly around 0 with uniform variation, it 

indicates that the data fit a linear model, have normally distributed 

residuals for each value of x, and constant standard deviation σ. 



Residuals are randomly scattered  
à good! 

 
 
 
Curved pattern  
à the relationship is not linear. 

 
 
Change in variability across plot 
à σ not equal for all values of x. 



Confidence intervals for regression parameters 
Estimating the regression parameters β0 and β1 is a case of one-
sample inference with unknown population variance.  

   We rely on the t distribution, with n – 2 degrees of freedom. 
 

A level C confidence interval for the slope, β1, is based on an 
estimate of the standard deviation of the estimated slope, b1: 

b1  ±  t* SEb1       

 

A level C confidence interval for the intercept, β0, is based on an 
estimate of the standard deviation of the estimated intercept, b0: 

b0  ±  t* SEb0       

 

t* is the value for the t (n – 2) distribution with area C between –t* and +t*. 
We’ll see formulas for the SE values in 10.2. 



Significance test for the slope 

We can test the hypothesis  H0: β1 = 0 against a 1 or 2 sided alternative. 

 

We calculate t = b1 / SEb1, 

which has a t (n – 2)  

distribution to find the  

p-value of the test. 

 

 

 

Note: Software typically provides 

two-sided p-values.  



Confidence interval for µy 

We can calculate a confidence interval for the population mean µy 

of all responses y when x takes the value x*: 
 

This interval is centered on ŷ, the unbiased estimate of µy, and has 

The typical form of a CI: estimate ± t*SEestimate. 
 

The true value of the population mean µy when x = x* 

will be within our confidence interval in 

C% of samples taken from the population. 



The level C confidence interval for the mean response µy at a given 

value x* of x is:  

 

 

A confidence interval for µy can be 

found for any value, x*. Graphically, 

these confidence intervals are shown 

as a pair of smooth curves centered 

on the LS regression line. We often 

call these “confidence bands”. 

t* is the value from the t (n – 2) 
distribution with area C between 
–t* and +t*. Again, we’ll hold off 
on the SE term for now. 

95% confidence 
interval for µy 

ˆ y ± t
*SE ˆ



Inference for prediction 
We have seen that one use of regression is to predict the value of y for 

a particular value of x: ŷ = b0 + b1x. Now that we understand the ideas 

of statistical inference, we can employ them to help us understand the 

variability of that simple estimate. 

 

To predict an individual response y for a given value of x, we use a 

prediction interval. The prediction interval 

is wider than the CI for mean response to 

reflect the fact that individual observations 

are more variable. 



The level C prediction interval for a single observation of y when x 

takes the value x* is: 
 

  

We can display the prediction 

intervals in the same way as the CI 

for mean response. 

95% prediction 
interval for ŷ   

t* is the value for the t (n – 2) distribution 
with area C between –t* and +t*. ŷ ± t*SEŷ



p  The confidence interval for µy estimates the mean value of y for all 
individuals in the population whose value of x is x*. 
 
p  The prediction interval predicts the value of y for one single 
individual whose value of x is x*.  

95% prediction interval for y 
95% confidence interval for µy   

This figure illustrates the fact that 

the CI for mean response is 

narrower than the corresponding 

prediction interval. Notice that both 

intervals are most narrow for values 

near the center of the X distribution. 



1918 influenza epidemic
Date # Cases # Deaths
week 1 36 0
week 2 531 0
week 3 4233 130
week 4 8682 552
week 5 7164 738
week 6 2229 414
week 7 600 198
week 8 164 90
week 9 57 56
week 10 722 50
week 11 1517 71
week 12 1828 137
week 13 1539 178
week 14 2416 194
week 15 3148 290
week 16 3465 310
week 17 1440 149

1918 influenza epidemic
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1918 flu epidemic 

The graph suggests that 7 to 9% of those diagnosed 
with the flu died within about a week of diagnosis.  

 

We look at the relationship between the number of 
deaths in a given week and the number of new 
diagnosed cases one week earlier. 



 EXCEL  
 Regression Statistics   
 Multiple R           0.911   
 R Square           0.830   
 Adjusted R Square   0.82   
 Standard Error  85.07   
 Observations         16.00    
 

 Coefficients  St. Error  t Stat   P-value  Lower 95%  Upper 95%  
Intercept    49.292     29.845    1.652    0.1209    (14.720)  113.304  

FluCases0     0.072      0.009    8.263    0.0000      0.053     0.091 

1918 flu epidemic: Relationship between the number of 
deaths in a given week and the number of new diagnosed 
cases one week earlier. 

 1bSE

s  

r = 0.91 

P-value for 
H0: β1 = 0 

b1 

P-value very small è reject H0 è β1 significantly different from 0 

There is a significant relationship between the number of flu 

cases and the number of deaths from flu a week later. 



SPSS 

Least squares regression line 
95% prediction interval for y 
95% confidence interval for µy   

CI for mean weekly death 

count one week after 4000 

flu cases are diagnosed: µy 

within about 300–380. 

Prediction interval for a 

weekly death count one 

week after 4000 flu cases 

are diagnosed: y within 

about 180–500 deaths. 
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Objectives (IPS Chapter 10.2) 

Inference for regression—more details 

p  Analysis of variance for regression 

p  The ANOVA F test 

p  Calculations for regression inference 

p  Inference for correlation 



Analysis of variance for regression 
The regression model is: 
 

     Data =      fit        +   residual 

        yi   =  β0 + β1xi  +      εi 

 

where the εi are independent and  
normally distributed N(0,σ) for all  

values of x. 
 

The calculations are based on a technique called Analysis of 
Variance, or ANOVA. ANOVA partitions the total amount of variation in 
a data set into two or more components of variation. 



Analysis of Variance (ANOVA) 
In the linear regression setting, there are two reasons that values of y 

differ from one another: 
u  The individuals have different values of X 
u  Random variation among individuals with the same value of X 

 
(yi − y )

2

i=1

n

∑ = (ŷi − y )
2

i=1

n

∑ + (yi − ŷ)
2

i=1

n

∑

Total variation of DATA 

Variation due to model FIT 

Variation due to RESIDUALS 

SST = SSM + SSE



Sums of Squares, Degrees of Freedom, 
and Mean Squares 
We have just seen that SSTotal = SSModel +SSError. Each sum 

of squares has an associated degrees of freedom, which also add, 

 
    DFT = DFM + DFE. 

 
For SLR, DFT = n-1, DFM = 1, DFE = n-2 

 
Each SS is also associated with Mean Squares, which do NOT add: 

     
    MS = SS ⁄ DF. 

 
MST = SST ⁄ DFT, MSM = SSM ⁄ DFM, MSE = SSE ⁄ DFE 



ANOVA and correlation 
Fact: the correlation between x and y is related to the percentage of 
variation in y explained by the FIT of the linear model:  

r2 = SSM
SST

If x and y are highly correlated, SST is dominated by the SSM 
term, with little contribution from the residuals (SSE); conversely, 
if x and y are weakly correlated, SST is dominated by SSE. 
 
r2 is often called the coefficient of determination. 



The null hypotheses that y is not linearly related to x,  

H0: β1 = 0 versus Ha: β1 ≠ 0 

can be tested by comparing MSM to MSE. 

 

    F = MSM ⁄ MSE 
 

When H0 is true, F follows  
the F(1, n − 2) distribution.  

The p-value is the probability of  

observing a value of F greater 

than the observed one.  

The ANOVA F test 



ANOVA table 

Source Sum of squares SS DF Mean square MS F P-value 

Model 1 MSM = SSM/DFM MSM/MSE Tail area above F 

Error n − 2 MSE = SSE/DFE 

Total n − 1 MST = SST/DFT 

∑ − 2)ˆ( yyi

∑ − 2)( yyi

∑ − 2)ˆ( ii yy

The estimate of σ is calculated from the residuals ei = yi – ŷi : 
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Calculations for regression inference 

To estimate the regression parameters we calculate the standard errors 
for the estimated regression coefficients. 

 

The standard error of the least-squares slope b1 is: 

 

 

 

The standard error of the intercept b0 is: 
 

SEb0
= s

1
n
+

x 2

(xi − xi )
2∑

SEb1
=

s

(xi − xi )
2∑

 



To estimate mean responses or predict future responses, we calculate 
the following standard errors 
 

The standard error of the mean response µy is: 

 

 

 
The standard error for predicting an individual response y is: 
 



Inference for correlation 

The sample correlation coefficient, r, can be used as an estimate of a 

population-level correlation, ρ. We can test H0: ρ = 0 with a t statistic: 

t = r n − 2
1− r2

A P-value can be found using the t(n-2) distribution. 



The test of significance for ρ uses the one-sample t-test for: H0: ρ = 0. 
 

 We compute the t statistics 
 for sample size n and 
 correlation coefficient r. 

 

The p-value is the area  

under t (n – 2) for values of  

T as extreme as t  in the  

direction of Ha: 

2

2
1
r nt

r
−=

−


