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Chapter 6 
Introduction to Inference 

6.1 Estimating with Confidence 

6.2 Tests of Significance 

6.3 Use and Abuse of Tests 

6.4 Power and Inference as a Decision 



6.1 Estimating with 
Confidence 

§  Inference 

§ Statistical Confidence 

§ Confidence Intervals 

§ Confidence Interval for a Population Mean 

§ Choosing the Sample Size 
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After we have selected a sample, we know the responses of the 
individuals in the sample. However, the reason for taking the sample is to 
infer from that data some conclusion about the wider population 
represented by the sample. 
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Statistical Inference 

Statistical inference provides methods for drawing conclusions about a 
population from sample data. 

Population 
Sample Collect data from a 

representative Sample... 

Make an Inference 
about the Population. 
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Simple Conditions for Inference 
About a Mean 

 This chapter presents the basic reasoning of statistical inference. We 
start with a setting that is too simple to be realistic. 

Simple Conditions for Inference About a Mean 
 

1. We have an SRS from the population of interest. There is no nonresponse 
or other practical difficulty. 
2. The variable we measure has an exactly Normal distribution N(µ,σ) in the 
population. 
3. We don’t know the population mean µ, but we do know the population 
standard deviation σ. 

Note: The conditions that we have a perfect SRS, that the 
population is exactly Normal, and that we know the population 
standard deviation are all unrealistic.  



6 

Statistical Estimation 
Suppose your instructor has selected a “Mystery Mean” value µ and 
stored it as “M” in their calculator. The following command was executed 
on their calculator: mean(randNorm(M,20,16))  
 

The result was 240.79.  This tells us 
the calculator chose an SRS of 16 
observations from a Normal population 
with mean M and standard deviation 
20.  The resulting sample mean of 
those 16 values was 240.79. 

We want to determine an interval of reasonable values for the 
population mean µ. We can use the result above and what we 
learned about sampling distributions in the previous chapters. 
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Since the sample mean is 240.79, we could guess 
that µ is “somewhere” around 240.79.  How close 
to 240.79 is µ likely to be? 

To answer this question, we must ask another: 

?population the from 16 size of
SRSs many took  weif vary    mean sample the How would x

    

€ 

Shape :  Since the population is Normal, so is the sampling distribution of  x .

    

€ 

Center :  The mean of the sampling distribution of  x   is the same as the mean 
of the population distribution, µ.

    

€ 

Spread:  The standard deviation of  x   for an SRS of 16 observations is 

σ x =
σ
n

=
20
16

= 5

Statistical Estimation 
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If we estimate that µ lies somewhere in the interval 230.79 to 250.79, 
we’d be calculating an interval using a method that captures the true µ 
in about 95% of all possible samples of this size. 

ü  In repeated samples, the values of the 
sample mean will follow a Normal 
distribution with mean µ and standard 
deviation 5. 

ü  The 68-95-99.7 Rule tells us that in 95% 
of all samples of size 16, the sample 
mean will be within 10 (two standard 
deviations) of µ. 

ü  If the sample mean is within 10 points of 
µ, then µ is within 10 points of the sample 
mean. 

ü  Therefore, the interval from 10 points below to 10 points above the 
sample mean will “capture” µ in about 95% of all samples of size 16. 

Statistical Estimation 



Confidence Level 
The confidence level is the overall capture rate if the method is used 
many times. The sample mean will vary from sample to sample, but when 
we use the method estimate ± margin of error to get an interval based on 
each sample, C% of these intervals capture the unknown population 
mean µ. 

To say that we are 95% confident is 
shorthand for “95% of all possible samples 
of a given size from this population will 
result in an interval that captures the 
unknown parameter.” 

Interpreting a Confidence Level 

9 



10 



11 

Confidence Interval 

A level C confidence interval for a parameter has two parts: 
§  An interval calculated from the data, which has the form: 

estimate ± margin of error 
 

§ A confidence level C, which gives the probability that the 
interval will capture the true parameter value in repeated 
samples. That is, the confidence level is the success rate for the 
method. 

We usually choose a confidence level of 90% or higher because we 
want to be quite sure of our conclusions. The most common confidence 
level is 95%. 

estimate ± margin of error

The Big Idea: The sampling distribution of      tells us how close to µ 
the sample mean      is likely to be. All confidence intervals we 
construct will have a form similar to this: 

 x
 x
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Confidence Interval for a Population 
Mean 

Previously, we estimated the “mystery mean” µ by constructing a confidence 
interval using the sample mean = 240.79.

To calculate a 95% confidence interval for µ, we use the formula: 
estimate ± (critical value) • (standard deviation of statistic) 

€ 

x ± z *⋅ σ
n

= 240.79 ±1.96⋅ 20
16

= 240.79 ± 9.8
= (230.99,250.59)

Choose an SRS of size n from a population having unknown mean µ and 
known standard deviation σ. A level C confidence interval for µ is:  

 

The critical value z* is found from the standard Normal distribution. 

Confidence Interval for the Mean of a Normal Population 

n
zx σ*±



Finding Specific z* Values 
We can use a table of z/t values (Table D). For a particular confidence 
level, C, the appropriate z* value is just above it.  

We can also use software. In Excel: 
     =NORMINV(probability,mean,standard_dev)  
     gives z for a given cumulative probability. 
 

Since we want the middle C probability, the probability we require is (1 - C)/2  
 

Example: For a 98% confidence level, =NORMINV(.01,0,1) = −2.32635 

Example: For a 98% confidence level, z* = 2.326. 
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The Margin of Error 
The confidence level C determines the value of z* (in table C). 

The margin of error also depends on z*. 

€ 

m = z*σ n

C 

z* −z* 

m          m 

Higher confidence C implies a 
larger margin of error m (thus less 
precision in our estimates). 
 
A lower confidence level C 
produces a smaller margin of error 
m (thus better precision in our 
estimates).  

14 
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How Confidence Intervals Behave 
The z confidence interval for the mean of a Normal population illustrates 
several important properties that are shared by all confidence intervals in 
common use. 
§  The user chooses the confidence level and the margin of error follows. 
§  We would like high confidence and a small margin of error. 

§  High confidence suggests our method almost always gives correct 
answers. 

§  A small margin of error suggests we have pinned down the parameter 
precisely. 

The margin of error for the z confidence interval is: 
 
 
The margin of error gets smaller when: 
§  z* gets smaller (the same as a lower confidence level C). 
§  σ is smaller. It is easier to pin down µ when σ is smaller. 
§  n gets larger. Since n is under the square root sign, we must take 

four times as many observations to cut the margin of error in half. 

€ 

z *⋅ σ
n



Impact of sample size 

Sample size n 

S
ta

nd
ar

d 
er

ro
r σ

 ⁄ 
√n

 

The spread in the sampling distribution of the mean is a function of 
the number of individuals per sample.  

§  The larger the sample size, the smaller the standard deviation 
(spread) of the sample mean distribution.  

§  The spread decreases at a rate equal to √n.   
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Choosing the Sample Size 
You may need a certain margin of error (e.g., drug trial, manufacturing 
specs). In many cases, the population variability (σ) is fixed, but we can 
choose the number of measurements (n).  
 
The confidence interval for a population mean will have a specified 
margin of error m when the sample size is: 

€ 

m = z * σ
n

   ⇔    n =
z *σ
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

Remember, though, that sample size is not always stretchable at will. There are 
typically costs and constraints associated with large samples. The best 
approach is to use the smallest sample size that can give you useful results. 
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Example 

€ 

n =
z*σ
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

  ⇒   n =
1.96 *1

0.5
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= 3.922 =15.3664

Density of bacteria in solution:  

Measurement equipment has standard deviation σ = 1 * 106 bacteria/ml 
fluid.  

How many measurements should you make to obtain a margin of error 
of at most 0.5 * 106 bacteria/ml with a confidence level of 95%? 

For a 95% confidence interval, z* = 1.96. 

Using only 15 measurements will not be enough to ensure that m is no 
more than 0.5 * 106. Therefore, we need at least 16 measurements. 
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Some Cautions 

¡  The data should be a SRS from the population. 

¡  The formula is not correct for other sampling designs. 

¡  Inference cannot rescue badly produced data. 

¡ Confidence intervals are not resistant to outliers. 

¡  If n is small (<15) and the population is not normal, the true 
confidence level will be different from C.  

¡  The standard deviation σ of the population must be known. 

¡  The margin of error in a confidence interval covers only random 
sampling errors! 
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6.2 Tests of Significance 

§ The Reasoning of Tests of Significance 

§ Stating Hypotheses 

§ Test Statistics 

§ P-values 

§ Statistical Significance 

§ Test for a Population Mean 

§ Two-Sided Significance Tests and Confidence Intervals 
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Confidence intervals are one of the two most common types of statistical 
inference. Use a confidence interval when your goal is to estimate a 
population parameter. The second common type of inference, called 
tests of significance, has a different goal: to assess the evidence 
provided by data about some claim concerning a population. 

21 

Statistical Inference 

A test of significance is a formal procedure for comparing observed 
data with a claim (also called a hypothesis) whose truth we want to 
assess.  
§ The claim is a statement about a parameter, like the population 

proportion p or the population mean µ.  
§ We express the results of a significance test in terms of a 

probability that measures how well the data and the claim agree. 
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The Reasoning of Tests of 
Significance 

We can use software to simulate 400 sets of 50 shots 
assuming that the player is really an 80% shooter.  

The observed statistic is so unlikely if the 
actual parameter value is p = 0.80 that it 
gives convincing evidence that the player’s 
claim is not true. 

You can say how strong the evidence 
against the player’s claim is by giving the 
probability that he would make as few as 
32 out of 50 free throws if he really makes 
80% in the long run. 

Suppose a basketball player claimed to be an 80% free-throw shooter.  To test this 
claim, we have him attempt 50 free-throws.  He makes 32 of them.  His sample 
proportion of made shots is 32/50 = 0.64. 

What can we conclude about the claim based on this sample data? 
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Stating Hypotheses 
A significance test starts with a careful statement of the claims we want 
to compare.  
 

The claim tested by a statistical test is called the null hypothesis (H0). 
The test is designed to assess the strength of the evidence against the 
null hypothesis. Often the null hypothesis is a statement of “no effect” 
or “no difference in the true means.”  

The claim about the population that we are trying to find evidence for is 
the alternative hypothesis (Ha). The alternative is one-sided if it 
states that a parameter is larger  or smaller than the null hypothesis 
value. It is two-sided if it states that the parameter is different from the 
null value (it could be either smaller or larger).

In the free-throw shooter example, our hypotheses are:  
H0: p = 0.80 
Ha: p < 0.80 

where p is the true long-run proportion of made free throws. 
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Example 
Does the job satisfaction of assembly-line workers differ when their work is 
machine-paced rather than self-paced? One study chose 18 subjects at random 
from a company with over 200 workers who assembled electronic devices. Half 
of the workers were assigned at random to each of two groups. Both groups did 
similar assembly work, but one group was allowed to pace themselves while 
the other group used an assembly line that moved at a fixed pace. After two 
weeks, all the workers took a test of job satisfaction. Then they switched work 
set-ups and took the test again after two more weeks. The response variable is 
the difference in satisfaction scores, self-paced minus machine-paced. 

State appropriate hypotheses for performing a significance test.  

The parameter of interest is the mean µ of the differences (self-paced minus 
machine-paced) in job satisfaction scores in the population of all assembly-
line workers at this company. 

Because the initial question asked whether job satisfaction differs, the 
alternative hypothesis is two-sided; that is, either µ < 0 or µ > 0. For simplicity, 
we write this as µ ≠ 0.  That is: 

H0: µ = 0 
Ha: µ ≠ 0 
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Test Statistic 
A test of significance is based on a statistic that estimates the 
parameter that appears in the hypotheses. When H0 is true, we expect 
the estimate to take a value near the parameter value specified in H0. 
 
Values of the estimate far from the parameter value specified by H0 
give evidence against H0.  

 

A test statistic calculated from the sample data measures how far 
the data diverge from what we would expect if the null hypothesis 
H0 were true.  
 
 
 
Large values of the statistic show that the data are not consistent 
with H0. 

  

€ 

z =
estimate -  hypothesized value

standard deviation of the estimate
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P-Value 

The null hypothesis H0 states the claim that we are seeking evidence 
against. The probability that measures the strength of the evidence 
against a null hypothesis is called a P-value. 

 

The probability, computed assuming H0 is true, that the statistic 
would take a value as extreme as or more extreme than the one 
actually observed is called the P-value of the test. The smaller 
the P-value, the stronger the evidence against H0 provided by 
the data.

§  Small P-values are evidence against H0 because they say that the 
observed result is unlikely to occur when H0 is true.  

§  Large P-values fail to give convincing evidence against H0 because 
they say that the observed result is likely to occur by chance when 
H0 is true. 
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Statistical Significance 
The final step in performing a significance test is to draw a conclusion 
about the competing claims you were testing. We will make one of two 
decisions based on the strength of the evidence against the null 
hypothesis (and in favor of the alternative hypothesis)―reject H0 or fail 
to reject H0.  

§  If our sample result is too unlikely to have happened by chance 
assuming H0 is true, then we’ll reject H0.  

§  Otherwise, we will fail to reject H0. 

Note:  A fail-to-reject H0 decision in a significance test doesn’t mean 
that H0 is true. For that reason, you should never “accept H0” or use 
language implying that you believe H0 is true. 

In a nutshell, our conclusion in a significance test comes down to:  
P-value small → reject H0 → conclude Ha (in context) 
P-value large → fail to reject H0 → cannot conclude Ha (in context) 
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There is no rule for how small a P-value we should require in order to 
reject H0 — it’s a matter of judgment and depends on the specific 
circumstances. But we can compare the P-value with a fixed value 
that we regard as decisive, called the significance level. We write it 
as α, the Greek letter alpha. When our P-value is less than the 
chosen αwe say that the result is statistically significant. 

 

If the P-value is smaller than alpha, we say that the data are 
statistically significant at level α. The quantity α is called the 
significance level or the level of significance.

When we use a fixed level of significance to draw a conclusion in a 
significance test, 
P-value < α → reject H0 → conclude Ha (in context)  
P-value ≥ α → fail to reject H0 → cannot conclude Ha (in context) 

Statistical Significance 
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Four Steps of Tests of Significance 

 1. State the null and alternative hypotheses. 

 2. Calculate the value of the test statistic. 

 3. Find the P-value for the observed data. 

 4. State a conclusion. 

Tests of Significance: Four Steps 

We will learn the details of many tests of significance in the following 
chapters. The proper test statistic is determined by the hypotheses 
and the data collection design.   
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Tests for a Population Mean 
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Example 

 Does the job satisfaction of assembly-line workers differ when their 
work is machine-paced rather than self-paced?  A matched pairs 
study was performed on a sample of workers, and each worker’s 
satisfaction was assessed after working in each setting.  The 
response variable is the difference in satisfaction scores, self-paced 
minus machine-paced. 

 The null hypothesis is no average difference in scores in the 
population of assembly-line workers, while the alternative 
hypothesis (that which we want to show is likely to be true) is that 
there is an average difference in scores in the population of 
assembly workers. 

 

H0: µ = 0   Ha: µ ≠ 0 
 

 This is considered a two-sided test because we are interested in 
determining if a difference exists (the direction of the difference is 
not of interest in this study). 
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 Suppose job satisfaction scores follow a Normal distribution with 
standard deviation σ = 60.  Data from 18 workers gave a sample 
mean score of 17.  If the null hypothesis of no average difference in 
job satisfaction is true, the test statistic would be: 

z =
x − µ0
σ

n

=
17 − 0
60

18

≈ 1.20

Example 
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 For the test statistic z = 1.20 and alternative hypothesis 
Ha: µ ≠ 0, the P-value would be: 

 
 

P-value = P(Z < –1.20 or Z > 1.20)  
= 2 P(Z < –1.20) = 2 P(Z > 1.20) 
= (2)(0.1151) = 0.2302  

 
 

  
 
If H0 is true, there is a 0.2302 (23.02%) chance that we would see 

results at least as extreme as those in the sample; thus, because 
we saw results that are likely if H0 is true, we therefore do not have 
good evidence against H0 and in favor of Ha. 

Example 



Two-Sided Significance Tests and 
Confidence Intervals 

Because a two-sided test is symmetrical, you can also use a 1 – α 
confidence interval to test a two-sided hypothesis at level α. 

α /2 α /2 

In a two-sided test,  

C = 1 – α 

 

C confidence level  

α significance level 

37 
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P-Values versus Fixed α
Statistics in practice uses technology to get P-values quickly and 
accurately. In the absence of suitable technology, you can get 
approximate P-values by comparing your test statistic with critical 
values from a table. 
 

To find the approximate P-value for any z statistic, compare z 
(ignoring its sign) with the critical values z* at the bottom of Table 
C. If z falls between two values of z*, the P-value falls between the 
two corresponding values of P in the “One-sided P” or the “Two-
sided P” row of Table C.

A confidence interval gives a black and white answer: Reject or don't 
reject H0. But it also estimates a range of likely values for the true 
population mean µ. 

A P-value quantifies how strong the evidence is against the H0. But if 
you reject H0, it doesn’t provide any information about the true 
population mean µ. 



6.3 Use and Abuse of Tests 

§ Choosing a Significance Level 

§ What Statistical Significance Does Not Mean 

§ Don’t Ignore Lack of Significance 

§ Beware of Searching for Significance 
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Choosing the significance level α 

Factors often considered: 

¡ What are the consequences of rejecting the null hypothesis  
(e.g., global warming, convicting a person for life with DNA 
evidence)? 

¡  Are you conducting a preliminary study? If so, you may want a larger 
α so that you will be less likely to miss an interesting result. 

Cautions About Significance Tests 

Some conventions: 
§  We typically use the standards of our field of work. 

§  There are no “sharp” cutoffs: for example, 4.9% versus 5.1%. 

§  It is the order of magnitude of the P-value that matters: “somewhat 
significant,” “significant,” or “very significant.” 
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What statistical significance does not mean 

Statistical significance only says whether the effect observed is likely to 
be due to chance alone because of random sampling. 

Statistical significance may not be practically important. That’s 
because statistical significance doesn’t tell you about the magnitude 
of the effect, only that there is one.  

An effect could be too small to be relevant. And with a large enough 
sample size, significance can be reached even for the tiniest effect. 

¡  A drug to lower temperature is found to reproducibly lower patient 
temperature by 0.4°Celsius (P-value < 0.01). But clinical benefits of 
temperature reduction only appear for a 1° decrease or larger.  

Cautions About Significance Tests 
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Don’t ignore lack of significance 
 

§  Consider this provocative title from the British Medical Journal: “Absence 
of evidence is not evidence of absence.” 

§  Having no proof of who committed a murder does not imply that the 
murder was not committed.  

 

Indeed, failing to find statistical significance in results is not rejecting 
the null hypothesis. This is very different from actually accepting it. The 
sample size, for instance, could be too small to overcome large 
variability in the population. 
 

When comparing two populations, lack of significance does not imply 
that the two samples come from the same population. They could 
represent two very distinct populations with similar mathematical 
properties. 

Cautions About Significance Tests 

42 



Beware of searching for significance 

There is no consensus on how big an effect has to be in order to be 
considered meaningful. In some cases, effects that may appear to be 
trivial can be very important.  
 

¡  Example: Improving the format of a computerized test reduces the average 
response time by about 2 seconds. Although this effect is small, it is 
important because this is done millions of times a year. The cumulative time 
savings of using the better format is gigantic.  

Always think about the context. Try to plot your results, and compare 
them with a baseline or results from similar studies.   

Cautions About Significance Tests 
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6.4 Power and Inference as a 
Decision 

§ Power 

§  Increasing the Power 

§  Inference as a Decision 

§ Error Probabilities 

44 
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Power 

When we draw a conclusion from a significance test, we hope our 
conclusion will be correct. But sometimes it will be wrong. There are two 
types of mistakes we can make.  

 

If we reject H0 when H0 is true, we have committed a Type I error.  
If we fail to reject H0 when H0 is false, we have committed a Type II 
error.

Truth about the population 

H0 true H0 false 
(Ha true) 

Conclusion 
based on 
sample 

Reject H0     Type I error Correct 
conclusion 

Fail to reject 
H0 

Correct 
conclusion Type II error 
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The probability of a Type I error is the probability of rejecting H0 when it 
is really true. This is exactly the significance level of the test. 

The significance level α of any fixed-level test is the probability of a 
Type I error. That is, α is the probability that the test will reject the 
null hypothesis H0 when H0 is in fact true. Consider the 
consequences of a Type I error before choosing a significance level. 

A significance test makes a Type II error when it fails to reject a null 
hypothesis that really is false. There are many values of the parameter 
that satisfy the alternative hypothesis, so we concentrate on one value. 
We can calculate the probability that a test does reject H0 when an 
alternative is true. This probability is called the power of the test 
against that specific alternative. 

 

The power of a test against a specific alternative is the probability 
that the test will reject H0 at a chosen significance level α when the 
specified alternative value of the parameter is true.

Power 
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A potato-chip producer wonders whether the significance test of H0: p = 
0.08 versus Ha: p > 0.08 based on a random sample of 500 potatoes has 
enough power to detect a shipment with, say, 11% blemished potatoes.  

We would reject 
H0 at α = 0.05 if 
our sample 
yielded a 
sample 
proportion to the 
right of the 
green line.  

What if p = 0.11? 

Since we reject H0 at α = 0.05 if 
our sample yields a proportion > 
0.0999, we’d correctly reject the 
shipment about 75% of the time. 

The power of a test against any alternative 
is 1 minus the probability of a Type II error 
for that alternative; that is, power = 1 – β. 

Power 
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How large a sample should we take when we plan to carry out a 
significance test? The answer depends on what alternative values of the 
parameter are important to detect. 

Summary of influences on the question “How many 
observations do I need?” 
• If you insist on a smaller significance level (such as 1% rather 
than 5%), you have to take a larger sample. A smaller 
significance level requires stronger evidence to reject the null 
hypothesis. 
• If you insist on higher power (such as 99% rather than 90%), 
you will need a larger sample. Higher power gives a better 
chance of detecting a difference when it is really there. 
•   At any significance level and desired power, detecting a 
small  difference requires a larger sample than detecting a 
large  difference. 

Power 



The Common Practice of Testing 
Hypotheses 

1.  State H0 and Ha as in a test of significance. 

2.  Think of the problem as a decision problem, so the probabilities of 
Type I and Type II errors are relevant. 

3.  Consider only tests in which the probability of a Type I error is no 
greater than α. 

4.  Among these tests, select a test that makes the probability of a 
Type II error as small as possible. 
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